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Abstract

The first half of this paper describes the use of two hierarchical
clustering algorithms - one uses a neighbour-joining, join-the-dots algorithm and
the other uses the new “Bubble Clustering” algorithm - that can be used to
generate dendograms or trees. These trees are a visual aid to determine the
relatedness of chemical compounds with certain features that can be collected
either from chemical models or experimental methods. The main benefit of the
Bubble Associator is increased stability when changing the number of features or
compounds being compared. The second half of this paper describes the use of the
Omni-Correlator code, which uses an evolutionary algorithm and function stacks to
generate a correlation matrix. This matrix can suggest how one feature may be
predicted using other features, and the various relationships between the

features for a chemical dataset. It was tested using a chemical dataset where the



features were tied together, and for a dataset that was mostly experimental; in
both cases the correlation matrix produced was meaningful and made sense from a

chemical standpoint.

Motivation for Project and Background

The development of chemical models is often performed using an equation of
state (EOS) and builds upon concepts such as the ideal gas law (PV=nRT, where
P=pressure, V=volume, n=moles, R=ideal gas constant, and T=temperature). Data
from a representative, easily-accessible compound of well-characterized purity
and behaviour can be used to determine qualities of similar compounds. For
example, experimental PVT data at the critical point can be unreliable, and so a
model was proposed in [1] using liquid oxygen data to determine the critical
temperature and critical density data for the liquid and vapour phases of
hydrogen, fluorine, and neon. Compressibility, density, and viscosity for natural
gases (sweet, sour, and gas condensates) was determined using an empirical model
in [2]. This work is an example of using a data set to generate a model that does
not require the use of an EOS.

Since the estimation of most chemical data requires a proper reference
chemical compound, the first step in generating chemical models should be to
determine which compounds are related and for which properties. For example, in
[3] the author was able to show a correlation between the noble gases Ne, Ar, Kr,

and Xe using the critical constants for PT and Vm (molar volume or V/n).

Hierarchical Clustering Algorithms

One method of determining important relationships is through a hierarchical

clustering. Hierarchical clustering methods have been used previously by various



groups to visually determine the relationships between datasets and to group
components of a dataset, such as transactional elements [4], fatty acids in
unknown microorganisms [5], normal and cirrhotic liver tissue [6], macromolecular
crystal structures [7], samples of Curcuma longa L. oil for quality assessment
[8], and principal components [9]. There has not been any hierarchical clustering
directly of chemical compounds for the sake of categorizing them.

A neighbour-joining algorithm is a specific example of hierarchical
clustering. It is best suited for data that has a common ancestry - for example
an evolutionary relationship among biological species [10]. The first experiments
that were run for this project used the neighbour-joining algorithm to compare
chemical compounds. How to generate dendograms (or trees) using this algorithm is
henceforth explained. This method is referred to as the join-the-dots (JTD)
method.

First, with a dataset containing n features (modes for comparison) and x
compounds, normalize the dataset such that all features are within the range

[0,1] using the following formula:

value of feature for compound x—minimum value for feature

Normalized Value = . Then, generate an n-

Maximum Value for feature—minimum value for feature
dimensional vector space containing the feature vectors. A feature vector is an
n-dimensional vector of numerical features that represents an object (in this
case a chemical compound). Using the Euclidean distance metric, connect the two
closest points in n-space. The Euclidean distance (ED) between two points p = (p1,

P2, « », Pn) and q = (91, 92, .. » Qn) is defined by the Pythagorean formula:




The next step is to join this newly generated point, now with a weight of two, to

the next closest point. This second point is at a weighted average distance

between points 1+2 and 3. The following graphic explains these steps.
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neighbours until all points are connected. The dendogram, or tree, is built

starting with the last two connected points, and branches off until all

individual points are obtained. A benefit of this type of algorithm is that the

data is easy to store in a computer through the use of parentheses, which note

where the branches split off.
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Previous work by the Ashlock group has shown
that neighbour-joining algorithms producing
trees with randomly-generated datasets can
be unstable when features are removed [11].
For a tree, the minimal containing clade
(MCC) vector (whose dimension is the number

of possible point pairs in the set) is



represented by each point pair having a value that corresponds to the number of
leaves or taxa that are needed to connect that point pair. An example of two
trees and their MCC and the EDwcc is shown.

To calculate the instability, two sets of trees were used: (1) trees
generated using all of the data where each taxa was “snipped” out individually
(Tsnipped) and (2) trees generated using the data without each taxa (Trebuiit). The
trees from [11] were compared using the following instability measure, where K is

the set containing the taxa and x are the members of that set:

. . 1
Instability = K Z EDycc(Tsnippear Trebuite)

X€EK

Thus, when lots of re-arrangement of a tree occurs after the removal of a
datapoint (or taxa), the calculated instability will be high.

Since chemical data does not necessarily belong to a common ancestor, and
since not all chemical data is obtainable for all compounds, it was necessary to
devise a new hierarchical clustering method that would not cause trees to fall
apart upon the application or removal of new data or new compounds.

An associator is defined as any measurement that can indicate similarity
between objects, and k-means clustering is an example of how to generate an
associator [12]. When data points are associated strongly (i.e. found within a
clustering), the associator can award a quality measure to the data points to
improve the given association between those data points. The “Bubble Associator”
or Bubble Clustering algorithm (BCA) is the proposed method for improving tree
stability between chemical datasets. Using a normalized dataset as input, an
associator matrix is generated, which can be used to make a tree. The following

algorithm explains the Bubble Associator code:



Find the minimum ED, m, and the maximum ED, M, between the data points.
Repeat:

Randomly generate radius R in the range [m,M]

A point in the space, p, 1s chosen uniformly at random

The number of points, N, within R of p 1s computed

For each point g within R of p:

A reward of 1/N is given to each point-pair in R of p
Until (Sample Number)

The sample number can be changed by the user, and gives a better tree for
higher iterations; however, there will be a point where increasing the sample
number does not make any significant changes to the association matrix used to
generate the tree. For the datasets that were used in this paper, more than 1M
samples did not change the tree, and above 10M samples, my computer crashed. Note
that the more points that are found within an n-dimensional hypersphere or
“bubble” (within R of p), the lower the reward, meaning that the best association

reward given is when two data points are found to be clustered together.

a b ¢ d a c d The way in which the Bubble Associator
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is/are connected that most strongly
correlate(s) with this initial pairing. A benefit of this method is thus the
immediate ability to point out the most correlated pair of points in the n-
dimensional space. A graphic showing how to generate a Bubble tree from the

associator matrix is shown.



The Omni-Correlator

The next part of the data analysis was done using the Omni-Correlator (0C),
which provides a means to do multi-feature analysis on a dataset. The motivation
is not just to predict one feature from others, but to see possible relationships
between these features. For instance, now that chemical compounds can be
clustered according to some hierarchy (as indicated by the BCA), one might want
to take a section of that hierarchy and use one of its members to generate a
model of predicting features for other members of that cluster.

To use the 0C, we first need a dataset in the form of a .dat file that
specifies the number of features and compounds to be compared. This dataset 1is
then normalized between [0,1] as before, and the code outputs a file called
“normalizingFactors.dat” that provides the maximum and minimum values for each
feature. This file can be used to check that the input data file was correctly
formatted, and is useful for spotting strange outliers that may be present in the
dataset.

Once the dataset has been inputted, the OC performs multiple evolutionary
runs that try to predict each feature from the values for the other features
using function stacks. A function stack is an array of nodes, and the default
number of nodes is 12, where each node contains a ephemeral constant in the range
-E < ¢ < E (E=5 by default). For example, feature 1 can be predicted from the
other features by: fi =0Q(f2f3 - fn)-

Note that a feature cannot be used to predict itself. The types of function
stacks that the OC can generate are: negation, scaling by a constant, square-

root, sine, cosine, and arctangent (for single arguments), and addition,



subtraction, protected division, max(arguments), min(arguments), and weighted
average (for 2 arguments).

The OC uses tournament selection to replace the two worst members with the
two best members within the tournament, where high values (~20) favour early
convergence to a model and low numbers (~4) favour exploration. The OC also uses
two-point crossover and a mutation operator, where the maximum number of
mutations (MNM) is the limit to how many mutations can be applied to the model
(range 1-MNM). In this paper, all OC runs were performed with tournament size 7,
MNM equal to 3, initial population size 10, maximum population size 10,000, and a
minimum of 30 runs for each feature. A small study was done to determine the most
important variable to improve data quality and the number of mating events was
found to be highly significant above initial population size, MNM, and tournament
size.

The fitness of the evolutionary algorithm is the mean squared error over x
data points (how different are the predicted values from the actual values?)
multiplied by a small logarithmic penalty determined by the number of variables
used, n. This penalty encourages the OC to generate relationships that use a

lower number of variables.

* (Ln(n) + 1)

, \j (predicted value — actual value)?
Fitness = Z "
X

At the end of each run, the measure "importance/error" is used
a b ¢ d

to reward each feature that was useful in predicting the

a| © ©o 10 80
b| © @ 3 8 current target feature. These values can be used to generate a
c|571 25 © 9

correlation matrix. This matrix has zeros down the diagonal
d| 82 7 52 0

indicating that a feature cannot predict itself, and is read

starting from the left-most column.



Three possible relationships for model building can be found using the

correlation matrix:

1. Features are unrelated. Example above: a cannot predict b and b cannot
predict a.
2. One feature is asymmetrically useful in predicting another, which

suggests that other features are involved in the prediction. Example
above: a can predict c well (571), but c cannot predict a well (10).

3. Two features are symmetrically useful in predicting one another. Example

above: a and d are useful to predict one another.

One feature of the OC is its generation of the time-of-last-innovation file
(TLI.dat), which gives the mating event for each feature for each run at which
the last significant improvement took place in terms of lowering the error. To
determine what error improvement is significant, the Error_values.dat file can be
screened; for example the significant error improvement measure was set to 0.01
for the two datasets compared in this paper as errors were generally in the range
0.01-0.9. The maximum allowed error for this research was set to 100. For
datasets with limited correlation, high error values are produced coupled with

low mating event values for the significant TLI.

Data Used

Data was gathered mainly from SigmaAldrich SDS catalogues [13], the Air
Liquide Gas Encyclopedia [14], the PubChem Database [15], the Lenntech Database
[16], [17], [18] and [19].

The compression factor, Z, is the molar volume of a gas (Vm) divided by the

molar volume of a perfect gas (Vm°) (from PV=nRT). We can re-write the compression



factor expression to give: PV, = RTZ. Since gases approach ideality at high molar

volumes and high temperatures, Z is considered as the first term in a series:

PV, —RT(1+B+C+ )
me v, V2

This expansion is known as the virial EOS. B and C are virial coefficients, and
can be calculated from experimental data regarding a gas’ compression factor. In
the datasets that were used, a, b, and c are constants that can be used to
predict the first virial coefficient B, which is usually the most important of
the virial coefficients [20] [17]. B can also be related to the critical
compression factor Z., which can be determined using the critical values (P., T,
and Vm.) for a compound and the ideal gas constant, R [17].

The critical constants can be derived from a phase diagram for a given
compound (plot of temperature versus pressure). Below the critical temperature, a
gas can be condensed to form a liquid, as separated by a defined surface. At or
above the critical temperature, a compressed gas will form a dense supercritical
fluid.

Toxicity measures were incorporated for the later datasets to try and
improve the yes (value=1) and no (value=0) measure. The easiest measure of
toxicity to find that covered the most compounds was the Immediately Dangerous to
Life or Health Concentrations (IDLH), given in parts-per-million (ppm). The
values used were only dependent on toxic effects and not the lower-explosive
limit (LEL). The definition for IDLH is: “An atmospheric concentration of any
toxic, corrosive or asphyxiant substance that poses an immediate threat to life
or would cause irreversible or delayed adverse health effects or would interfere

with an individual's ability to escape from a dangerous atmosphere” [18].



Other data includes: molar mass (g/mol of substance), the index of hydrogen
deficiency (IHD), melting point, boiling point at latm of pressure (normal
boiling point), specific gravity, heat of combustion, enthalpy of vaporization,
flash point, and auto-ignition temperature. The IHD is the number of double bonds
or rings present in an organic compound. The specific gravity (SG) is the density
of a liquid divided by the density of water at 4°C.

Heat of combustion is the energy released per amount (mass or moles) of a
substance when it has undergone complete combustion with oxygen. Enthalpy of
vaporization is the amount of energy in joules required to transform a given
amount of substance into a gas. The flashpoint is the temperature at which the
gas at the surface of a liquid will ignite in air when exposed to a source of
ignition. The auto-ignition temperature is the temperature at which the compound
will spontaneously ignite without source of ignition. For non-flammable
materials, the value given in the dataset was 20x the highest flash point and/or

auto-ignition temperature from within the dataset.

Results for the two Hierarchical Clustering Methods

All trees generated from Experiments 1-4 can be found in the supporting

information file folder that I have attached with my report.

Experiment 1

This experiment compared P., Vm., T., a, b, ¢, Z., molar mass, and IDH for a
total of 76 chemical compounds, which included various gases, solvents/organics,
and a few solids. The purpose of this experiment was to compare as many compound
and properties as possible to see how the BCA versus the JTD method could predict

data clusters.



The BCA does not indicate how far apart correlations between branches of the
tree are as does the JTD method; to add a horizontal distance metric to the tree
would be a next step for improving its readability and usefulness. Bubble
clustering shows fewer small branches and lots of large branches, suggesting
lower levels of clustering than for the JTD tree. Bubble clustering improves the
data analysis by only considering significant relationships and these pairwise
relationships are a lot easier to see directly from the tree. A problem with the
JTD method is that it could be interpreted to show relationships that do not
really exist. We can also derive the two most closely related points from the
Bubble clustering tree, but we cannot do this as easily with the JTD tree because
it generates the tree starting from the last two points that were connected in n-

space.
Experiment 2

The purpose of this experiment was to see how the BCA and the JTD method
compared for small datasets, and so only the normal boiling point, the molar
mass, and the density (at ©°C and latm) were compared for 11 gases. The trees were

essentially identical except the BCA did not pair-up Xenon with Krypton.
Experiment 3

This experiment was performed to determine the relative stabilities of the
two hierarchical clustering methods. In Experiment 3a, the P., Vm., T, a, b, c,
and M were used to compare 24 compounds, mainly consisting of elements and
inorganic compounds. For Experiment 3b, these same values were used except data
was added relating to colour, odour, and toxicity (using the simple measure of
yes=1, no=0), and physical state at SATP (0,0.5,1 for gas, liquid, and solid

respectively).



The results from this experiment were significant in proving the increased
stability for the trees generated using the BCA. Comparing BCA tree 3a with 3b
indicates that the oxygen-argon relationship is still present after data
addition, whereas the JTD method removes that association and puts the two
compounds in completely different sections of the tree. The two other important
relationships that were maintained between the two BCA trees were the ((He,D,)Ne)
tri-cluster and the HC1l-NH; pair; in the JTD trees these two clusters were

destroyed.

Experiment 4

These trees were generated using the data collected during the latter half of the

semester, given in the table below.

Feature Minimum Maximum

Number Feature Name Value Value Units

0 Latent Heat of Vaporization 1.67 13.7 x10> 1/kg
1 Heat of Combustion -460.13 0 x10> 1/kg
2 Specific Gravity of liquid 0.59 3.12 Unitless
3 Auto-ignition Temperature 180 15400  °C

4 Flash Point -191 1580 °C

5 Critical Temperature 132.9 748.5 K

6 Critical Pressure 2.49 11.35 MPa

7 Molar Mass 17.03 159.81 g/mol

8 Normal Boiling Point -191.5 218 °C

9 Melting Point -220 79.5 °C

10 IDLH 2 100,000 ppm

The purpose of this experiment was to show that, by having an extreme outlying
value, data can be clustered by the tree-generator to observe two specific
groups. In this case, the non-flammable compounds are much further away in space
from the flammable compounds due to the high values for flashpoint and auto-
ignition temperature that were used. This is an example of using domain knowledge

to generate targeted clustering.



One section of both trees includes all the non-flammable gases except for
bromine, which is unusual because it is a liquid at SATP, and has a high specific
gravity. Another outlier, propane (probably due to its high heat of combustion),
can be easily seen on the BCA tree. However, propane and bromine are more
distinctly separate in the BCA tree than the JTD tree. Another difference between
the trees is that the BCA does not directly associate chloroform and
trichlorofluoromethane as does the join-the-dots method. Since these two
compounds differ only by H swapped with F, their properties should be reviewed

individually to determine whether they are actually closely related or not.

Results for the Omni-Correlator

All relevant TLI plots generated from Experiments 5 and 6 can be found in the
supporting information file folder that I have attached with my report.
Experiment 5

The correlation matrix for this experiment was generated using the properties

from the table below for 76 compounds as found in the trees for Experiment 1:

Feature Feature Name Minimum Maximum Units

Number Value Value

0 Critical Pressure 0.23 22.06 MPa
Critical Molar Volume 41.7 250 cm®/mol

2 Critical Temperature 5.19 647.1 K

3 Critical Compression Factor 0.228 0.312 Unitless

4 Constant a 15.9 540.5 na

5 Constant b 3.37 380.9 na

6 Constant c 3.245 1928.2 na

7 Molar Mass 2.02 352.02 g/mol

The following is the correlation matrix generated from Experiment 5. This dataset
is “rigged” because it contains correlations and functions that are already known

between the variables. The error values that were found (0.01 magnitude) were



therefore lower than in Experiment 6 (0.1 magnitude), where experimental values
were used. The evolutionary algorithm used to generate the matrix was set to all
of the default parameters with the number of mating events (mevs) set to 10M.
From the TLI file, the errors tend to stop improving with 0.01 significance
measure after about 5M mevs.

The OC does a good job in predicting an asymmetrical relationship between Z.
and (P, Vm.), where the critical pressure and critical molar volume can be used
to predict the critical compression factor, but not the other way around. This
correlation makes a lot of sense based on the equation shown in the correlation
matrix for Z.. T. was not as useful in predicting Z. compared to P. and Vm,
probably because it is redundant to have all three critical constants to predict
Z.. The 0OC also shows that there are fairly good symmetric correlations between
the PVT critical constants, which would probably be the first area to explore

with making an actual model from the matrix.

I)C\/Cﬂl
Pc ch TC RTC a b C M
PC 3780.968 6259.302 2176.851 3724.068 189.619 6282.531 195.530
ch 13375.280 2093.194 8444 .437 7903.859 3347.673 5574 .444 2103.491
Tc 9227.504 6594 .496 590.960 1163.940 1930.306 4814.955 265.311
Zc 833.400 240.273 345.950 90.004 1145.928 477.388 0.000
a 457.209 9123.915 735.517 718.717 7359.809 292.770 361.578
b 70.587 2240.844 1120.965 8885.299 11235.223 777.592 1266.004
C 9545.,028 4519.595 4159.125 170.382 389.531 4792 .814 369.020
M 171.710 2253.933 1093.796 42.078 789.264 576.281 100.400

Experiment 6
The dataset from Experiment 4 was used for this OC experiment. The TLI data file
suggested that no more significant improvements (measure ©.01) could be made by

increasing the mevs beyond 100,000 for at least two features (4,11). Increasing



the mevs to 5M and looking at the TLI file indicates that most significant
decreases in error happen at or before 500,000 mevs. However, the matrices
generated from the 10M and 100,000 mevs retain a lot of similar zeros and so the

matrix from 100,000 mevs is shown below.

1 2 3 4 5
CAE Heat of Specific g‘rﬁzon Flash 6 7 8 o 10 1
Vapor. Comb. Gravity Temp Point T B M B NP, [BLE
C C . . . .

1 5.889 85.516 79.019 25.388 42.279 126.336 81.105 46.960 0.000 0.000
2 0.000 23.060 6.483  229.962 33.603 208.916 26.131 12.419 0.000 0.000
3 33.373 67.732 26.219  453.919 0.000 436.116 500.460 18.067 15.923 0.000
4 27.380 0.000 394.594 651.865 0.000 646.656 399.716 194.526  635.457 218.524
5 960.109 2205.480 2012.338  3096.319 576.774 218.890 1610.708 278.981 131.323 57.173
6 51.863 0.000 234.537 0.000 0.000 711.440 637.201 1376.786  321.285 0.000
7 271.607 93.179 281.831 0.000 0.000 0.000 29.684 35.283 0.000 0.000
8 655.422 0.000 165.645 0.000 30.110  202.680 50.736 68.559  351.768 9.202
9 232.165 31.155 0.000 31.623 0.000 1638.184 1073.594 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000  313.929 0.000 0.000 0.000 0.000
11 0.000 61.012 104.715 12.642 0.000 0.000 0.000 0.000 0.000 27.605

The OC matrix above indicates an asymmetric relationship between 5 and (2,3,4),
where the flash point can be predicted with high correlation using the heat of
combustion, specific gravity, and auto-ignition temperature. Investigation of
this relationship for modelling data would also be of interest. This matrix also
predicts a symmetrical relationship between the critical temperature and the

boiling point, which is a sensible correlation.

Conclusions and Next Steps

This paper has compared two different hierarchical clustering algorithms,
the Bubble Clustering Algorithm (BCA) and the Join-The-Dots (JTD) Algorithm, on
various chemical data sets of varying sizes and features. The BCA is an
improvement from the JTD method because it has higher stability when chemical

data is added or removed. The datasets used to generate the trees can be tailored



by giving one or two values an obvious space for clustering, and the example
given was with flammable vs non-flammable materials. Improvements to be made for
the BCA include generation of a horizontal distance measure, similar to the JTD
trees, that shows how close or far apart in value the data is from the associator
matrix for neighbouring branches.

This paper has also explained how to use the Omni-correlator code to
generate correlation matrices of significant importance and it has been used to
satisfactorily show relationships within trivial and non-trivial (experimental)
data sets for chemical compounds. The next steps would be to take these
significant relationships and to try and build a model with the dataset.
Improvements for the OC would be to make the program more user friendly by
allowing the code to accept different formats of input file. Also, it may be

helpful to generate multiple TLI files for one run of the OC.
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