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Abstract 

The first half of this paper describes the use of two hierarchical 

clustering algorithms - one uses a neighbour-joining, join-the-dots algorithm and 

the other uses the new “Bubble Clustering” algorithm – that can be used to 

generate dendograms or trees. These trees are a visual aid to determine the 

relatedness of chemical compounds with certain features that can be collected 

either from chemical models or experimental methods. The main benefit of the 

Bubble Associator is increased stability when changing the number of features or 

compounds being compared. The second half of this paper describes the use of the 

Omni-Correlator code, which uses an evolutionary algorithm and function stacks to 

generate a correlation matrix. This matrix can suggest how one feature may be 

predicted using other features, and the various relationships between the 

features for a chemical dataset. It was tested using a chemical dataset where the 



features were tied together, and for a dataset that was mostly experimental; in 

both cases the correlation matrix produced was meaningful and made sense from a 

chemical standpoint.  

Motivation for Project and Background 

The development of chemical models is often performed using an equation of 

state (EOS) and builds upon concepts such as the ideal gas law (PV=nRT, where 

P=pressure, V=volume, n=moles, R=ideal gas constant, and T=temperature). Data 

from a representative, easily-accessible compound of well-characterized purity 

and behaviour can be used to determine qualities of similar compounds. For 

example, experimental PVT data at the critical point can be unreliable, and so a 

model was proposed in [1] using liquid oxygen data to determine the critical 

temperature and critical density data for the liquid and vapour phases of 

hydrogen, fluorine, and neon. Compressibility, density, and viscosity for natural 

gases (sweet, sour, and gas condensates) was determined using an empirical model 

in [2]. This work is an example of using a data set to generate a model that does 

not require the use of an EOS. 

Since the estimation of most chemical data requires a proper reference 

chemical compound, the first step in generating chemical models should be to 

determine which compounds are related and for which properties. For example, in 

[3] the author was able to show a correlation between the noble gases Ne, Ar, Kr, 

and Xe using the critical constants for PT and Vm (molar volume or V/n).  

Hierarchical Clustering Algorithms 

One method of determining important relationships is through a hierarchical 

clustering. Hierarchical clustering methods have been used previously by various 



groups to visually determine the relationships between datasets and to group 

components of a dataset, such as transactional elements [4], fatty acids in 

unknown microorganisms [5], normal and cirrhotic liver tissue [6], macromolecular 

crystal structures [7], samples of Curcuma longa L. oil for quality assessment 

[8], and principal components [9]. There has not been any hierarchical clustering 

directly of chemical compounds for the sake of categorizing them. 

A neighbour-joining algorithm is a specific example of hierarchical 

clustering. It is best suited for data that has a common ancestry – for example 

an evolutionary relationship among biological species [10]. The first experiments 

that were run for this project used the neighbour-joining algorithm to compare 

chemical compounds. How to generate dendograms (or trees) using this algorithm is 

henceforth explained. This method is referred to as the join-the-dots (JTD) 

method. 

First, with a dataset containing n features (modes for comparison) and x 

compounds, normalize the dataset such that all features are within the range 

[0,1] using the following formula: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =  
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑥−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
. Then, generate an n-

dimensional vector space containing the feature vectors. A feature vector is an 

n-dimensional vector of numerical features that represents an object (in this 

case a chemical compound). Using the Euclidean distance metric, connect the two 

closest points in n-space. The Euclidean distance (ED) between two points p = (p1, 

p2, … , pn) and q = (q1, q2, … , qn) is defined by the Pythagorean formula: 

𝐸𝐷 = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 

 



The next step is to join this newly generated point, now with a weight of two, to 

the next closest point. This second point is at a weighted average distance 

between points 1+2 and 3. The following graphic explains these steps.  

Note that the vertical distance 

between points is an indication 

of how far away the points are 

in space relative to one 

another. The method uses an 

agglomerative or bottom-up 

approach; the points begin as 

their own cluster, and then they 

are clustered with their 

neighbours until all points are connected. The dendogram, or tree, is built 

starting with the last two connected points, and branches off until all 

individual points are obtained. A benefit of this type of algorithm is that the 

data is easy to store in a computer through the use of parentheses, which note 

where the branches split off. 

Previous work by the Ashlock group has shown 

that neighbour-joining algorithms producing 

trees with randomly-generated datasets can 

be unstable when features are removed [11]. 

For a tree, the minimal containing clade 

(MCC) vector (whose dimension is the number 

of possible point pairs in the set) is 



represented by each point pair having a value that corresponds to the number of 

leaves or taxa that are needed to connect that point pair. An example of two 

trees and their MCC and the EDMCC is shown.  

To calculate the instability, two sets of trees were used: (1) trees 

generated using all of the data where each taxa was “snipped” out individually 

(Tsnipped) and (2) trees generated using the data without each taxa (Trebuilt). The 

trees from [11] were compared using the following instability measure, where K is 

the set containing the taxa and x are the members of that set: 

𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
1

|𝐾|
∑ 𝐸𝐷𝑀𝐶𝐶(𝑇𝑠𝑛𝑖𝑝𝑝𝑒𝑑, 𝑇𝑟𝑒𝑏𝑢𝑖𝑙𝑡)

𝑥∈𝐾

 

Thus, when lots of re-arrangement of a tree occurs after the removal of a 

datapoint (or taxa), the calculated instability will be high.  

Since chemical data does not necessarily belong to a common ancestor, and 

since not all chemical data is obtainable for all compounds, it was necessary to 

devise a new hierarchical clustering method that would not cause trees to fall 

apart upon the application or removal of new data or new compounds. 

An associator is defined as any measurement that can indicate similarity 

between objects, and k-means clustering is an example of how to generate an 

associator [12]. When data points are associated strongly (i.e. found within a 

clustering), the associator can award a quality measure to the data points to 

improve the given association between those data points. The “Bubble Associator” 

or Bubble Clustering algorithm (BCA) is the proposed method for improving tree 

stability between chemical datasets. Using a normalized dataset as input, an 

associator matrix is generated, which can be used to make a tree. The following 

algorithm explains the Bubble Associator code: 

 



Find the minimum ED, m, and the maximum ED, M, between the data points. 

Repeat: 

 Randomly generate radius R in the range [m,M] 

 A point in the space, p, is chosen uniformly at random 

 The number of points, N, within R of p is computed 

 For each point q within R of p: 

  A reward of 1/N is given to each point-pair in R of p  

Until (Sample Number) 

The sample number can be changed by the user, and gives a better tree for 

higher iterations; however, there will be a point where increasing the sample 

number does not make any significant changes to the association matrix used to 

generate the tree. For the datasets that were used in this paper, more than 1M 

samples did not change the tree, and above 10M samples, my computer crashed. Note 

that the more points that are found within an n-dimensional hypersphere or 

“bubble” (within R of p), the lower the reward, meaning that the best association 

reward given is when two data points are found to be clustered together. 

The way in which the Bubble Associator 

generates the tree is different from the 

JTD method because it begins by 

connecting the two most associated 

points. From there, the next point(s) 

is/are connected that most strongly 

correlate(s) with this initial pairing. A benefit of this method is thus the 

immediate ability to point out the most correlated pair of points in the n-

dimensional space. A graphic showing how to generate a Bubble tree from the 

associator matrix is shown.  



The Omni-Correlator 

The next part of the data analysis was done using the Omni-Correlator (OC), 

which provides a means to do multi-feature analysis on a dataset. The motivation 

is not just to predict one feature from others, but to see possible relationships 

between these features. For instance, now that chemical compounds can be 

clustered according to some hierarchy (as indicated by the BCA), one might want 

to take a section of that hierarchy and use one of its members to generate a 

model of predicting features for other members of that cluster.  

To use the OC, we first need a dataset in the form of a .dat file that 

specifies the number of features and compounds to be compared. This dataset is 

then normalized between [0,1] as before, and the code outputs a file called 

“normalizingFactors.dat” that provides the maximum and minimum values for each 

feature. This file can be used to check that the input data file was correctly 

formatted, and is useful for spotting strange outliers that may be present in the 

dataset.  

Once the dataset has been inputted, the OC performs multiple evolutionary 

runs that try to predict each feature from the values for the other features 

using function stacks. A function stack is an array of nodes, and the default 

number of nodes is 12, where each node contains a ephemeral constant in the range 

–E < c < E (E=5 by default). For example, feature 1 can be predicted from the 

other features by: 𝑓1 = 𝑄(𝑓2, 𝑓3, … , 𝑓𝑛). 

Note that a feature cannot be used to predict itself. The types of function 

stacks that the OC can generate are: negation, scaling by a constant, square-

root, sine, cosine, and arctangent (for single arguments), and addition, 



subtraction, protected division, max(arguments), min(arguments), and weighted 

average (for 2 arguments). 

The OC uses tournament selection to replace the two worst members with the 

two best members within the tournament, where high values (~20) favour early 

convergence to a model and low numbers (~4) favour exploration. The OC also uses 

two-point crossover and a mutation operator, where the maximum number of 

mutations (MNM) is the limit to how many mutations can be applied to the model 

(range 1-MNM). In this paper, all OC runs were performed with tournament size 7, 

MNM equal to 3, initial population size 10, maximum population size 10,000, and a 

minimum of 30 runs for each feature. A small study was done to determine the most 

important variable to improve data quality and the number of mating events was 

found to be highly significant above initial population size, MNM, and tournament 

size. 

The fitness of the evolutionary algorithm is the mean squared error over x 

data points (how different are the predicted values from the actual values?) 

multiplied by a small logarithmic penalty determined by the number of variables 

used, n. This penalty encourages the OC to generate relationships that use a 

lower number of variables.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  √∑
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)2

𝑥
𝑥

∗ (𝐿𝑛(𝑛) + 1) 

At the end of each run, the measure "importance/error" is used 

to reward each feature that was useful in predicting the 

current target feature. These values can be used to generate a 

correlation matrix. This matrix has zeros down the diagonal 

indicating that a feature cannot predict itself, and is read 

starting from the left-most column. 

 a b c d 

a 0 0 10 80 

b 0 0 3 8 

c 571 25 0 9 

d 82 7 52 0 



Three possible relationships for model building can be found using the 

correlation matrix: 

1. Features are unrelated. Example above: a cannot predict b and b cannot 

predict a. 

2. One feature is asymmetrically useful in predicting another, which 

suggests that other features are involved in the prediction. Example 

above: a can predict c well (571), but c cannot predict a well (10). 

3. Two features are symmetrically useful in predicting one another. Example 

above: a and d are useful to predict one another. 

One feature of the OC is its generation of the time-of-last-innovation file 

(TLI.dat), which gives the mating event for each feature for each run at which 

the last significant improvement took place in terms of lowering the error. To 

determine what error improvement is significant, the Error_values.dat file can be 

screened; for example the significant error improvement measure was set to 0.01 

for the two datasets compared in this paper as errors were generally in the range 

0.01-0.9. The maximum allowed error for this research was set to 100. For 

datasets with limited correlation, high error values are produced coupled with 

low mating event values for the significant TLI. 

Data Used 

Data was gathered mainly from SigmaAldrich SDS catalogues [13], the Air 

Liquide Gas Encyclopedia [14], the PubChem Database [15], the Lenntech Database 

[16], [17], [18] and [19]. 

The compression factor, Z, is the molar volume of a gas (Vm) divided by the 

molar volume of a perfect gas (Vmo) (from PV=nRT). We can re-write the compression 



factor expression to give: PVm = RTZ. Since gases approach ideality at high molar 

volumes and high temperatures, Z is considered as the first term in a series: 

𝑃𝑉𝑚 = 𝑅𝑇 (1 +
𝐵

𝑉𝑚
+

𝐶

𝑉𝑚
2

+ ⋯ ) 

This expansion is known as the virial EOS. B and C are virial coefficients, and 

can be calculated from experimental data regarding a gas’ compression factor. In 

the datasets that were used, a, b, and c are constants that can be used to 

predict the first virial coefficient B, which is usually the most important of 

the virial coefficients [20] [17]. B can also be related to the critical 

compression factor Zc, which can be determined using the critical values (Pc, Tc, 

and Vmc) for a compound and the ideal gas constant, R [17]. 

The critical constants can be derived from a phase diagram for a given 

compound (plot of temperature versus pressure). Below the critical temperature, a 

gas can be condensed to form a liquid, as separated by a defined surface. At or 

above the critical temperature, a compressed gas will form a dense supercritical 

fluid.  

Toxicity measures were incorporated for the later datasets to try and 

improve the yes (value=1) and no (value=0) measure. The easiest measure of 

toxicity to find that covered the most compounds was the Immediately Dangerous to 

Life or Health Concentrations (IDLH), given in parts-per-million (ppm). The 

values used were only dependent on toxic effects and not the lower-explosive 

limit (LEL). The definition for IDLH is: “An atmospheric concentration of any 

toxic, corrosive or asphyxiant substance that poses an immediate threat to life 

or would cause irreversible or delayed adverse health effects or would interfere 

with an individual's ability to escape from a dangerous atmosphere” [18]. 



Other data includes: molar mass (g/mol of substance), the index of hydrogen 

deficiency (IHD), melting point, boiling point at 1atm of pressure (normal 

boiling point), specific gravity, heat of combustion, enthalpy of vaporization, 

flash point, and auto-ignition temperature. The IHD is the number of double bonds 

or rings present in an organic compound. The specific gravity (SG) is the density 

of a liquid divided by the density of water at 4°C.  

Heat of combustion is the energy released per amount (mass or moles) of a 

substance when it has undergone complete combustion with oxygen. Enthalpy of 

vaporization is the amount of energy in joules required to transform a given 

amount of substance into a gas. The flashpoint is the temperature at which the 

gas at the surface of a liquid will ignite in air when exposed to a source of 

ignition. The auto-ignition temperature is the temperature at which the compound 

will spontaneously ignite without source of ignition. For non-flammable 

materials, the value given in the dataset was 20x the highest flash point and/or 

auto-ignition temperature from within the dataset. 

Results for the two Hierarchical Clustering Methods 

All trees generated from Experiments 1-4 can be found in the supporting 

information file folder that I have attached with my report. 

Experiment 1 

This experiment compared Pc, Vmc, Tc, a, b, c, Zc, molar mass, and IDH for a 

total of 76 chemical compounds, which included various gases, solvents/organics, 

and a few solids. The purpose of this experiment was to compare as many compound 

and properties as possible to see how the BCA versus the JTD method could predict 

data clusters.  



The BCA does not indicate how far apart correlations between branches of the 

tree are as does the JTD method; to add a horizontal distance metric to the tree 

would be a next step for improving its readability and usefulness. Bubble 

clustering shows fewer small branches and lots of large branches, suggesting 

lower levels of clustering than for the JTD tree. Bubble clustering improves the 

data analysis by only considering significant relationships and these pairwise 

relationships are a lot easier to see directly from the tree. A problem with the 

JTD method is that it could be interpreted to show relationships that do not 

really exist. We can also derive the two most closely related points from the 

Bubble clustering tree, but we cannot do this as easily with the JTD tree because 

it generates the tree starting from the last two points that were connected in n-

space. 

Experiment 2 

The purpose of this experiment was to see how the BCA and the JTD method 

compared for small datasets, and so only the normal boiling point, the molar 

mass, and the density (at 0˚C and 1atm) were compared for 11 gases. The trees were 

essentially identical except the BCA did not pair-up Xenon with Krypton. 

Experiment 3 

This experiment was performed to determine the relative stabilities of the 

two hierarchical clustering methods. In Experiment 3a, the Pc, Vmc, Tc, a, b, c, 

and M were used to compare 24 compounds, mainly consisting of elements and 

inorganic compounds. For Experiment 3b, these same values were used except data 

was added relating to colour, odour, and toxicity (using the simple measure of 

yes=1, no=0), and physical state at SATP (0,0.5,1 for gas, liquid, and solid 

respectively). 



The results from this experiment were significant in proving the increased 

stability for the trees generated using the BCA. Comparing BCA tree 3a with 3b 

indicates that the oxygen-argon relationship is still present after data 

addition, whereas the JTD method removes that association and puts the two 

compounds in completely different sections of the tree. The two other important 

relationships that were maintained between the two BCA trees were the ((He,D2)Ne) 

tri-cluster and the HCl-NH3 pair; in the JTD trees these two clusters were 

destroyed.  

Experiment 4 

These trees were generated using the data collected during the latter half of the 

semester, given in the table below. 

Feature 
Number 

  Feature Name 
Minimum 
Value 

Maximum 
Value 

Units 

0   Latent Heat of Vaporization 1.67 13.7 x105 J/kg 
1   Heat of Combustion -460.13 0 x105 J/kg 
2   Specific Gravity of liquid 0.59 3.12  Unitless 
3   Auto-ignition Temperature 180 15400 °C 
4   Flash Point -191 1580 °C 
5   Critical Temperature 132.9 748.5 K 
6   Critical Pressure 2.49 11.35 MPa 
7   Molar Mass 17.03 159.81 g/mol 
8   Normal Boiling Point -191.5 218 °C 
9   Melting Point -220 79.5 °C 
10   IDLH 2 100,000 ppm 

 

The purpose of this experiment was to show that, by having an extreme outlying 

value, data can be clustered by the tree-generator to observe two specific 

groups. In this case, the non-flammable compounds are much further away in space 

from the flammable compounds due to the high values for flashpoint and auto-

ignition temperature that were used. This is an example of using domain knowledge 

to generate targeted clustering. 



One section of both trees includes all the non-flammable gases except for 

bromine, which is unusual because it is a liquid at SATP, and has a high specific 

gravity. Another outlier, propane (probably due to its high heat of combustion), 

can be easily seen on the BCA tree. However, propane and bromine are more 

distinctly separate in the BCA tree than the JTD tree. Another difference between 

the trees is that the BCA does not directly associate chloroform and 

trichlorofluoromethane as does the join-the-dots method. Since these two 

compounds differ only by H swapped with F, their properties should be reviewed 

individually to determine whether they are actually closely related or not. 

Results for the Omni-Correlator 

All relevant TLI plots generated from Experiments 5 and 6 can be found in the 

supporting information file folder that I have attached with my report. 

Experiment 5 

The correlation matrix for this experiment was generated using the properties 

from the table below for 76 compounds as found in the trees for Experiment 1: 

Feature 
Number 

Feature Name 
Minimum 
Value 

Maximum 
Value 

Units 

0 Critical Pressure 0.23 22.06 MPa 

1 Critical Molar Volume 41.7 250 cm3/mol 

2 Critical Temperature 5.19 647.1 K 

3 Critical Compression Factor 0.228 0.312 Unitless 

4 Constant a 15.9 540.5 na 

5 Constant b 3.37 380.9 na 

6 Constant c 3.245 1928.2 na 

7 Molar Mass 2.02 352.02 g/mol 

The following is the correlation matrix generated from Experiment 5. This dataset 

is “rigged” because it contains correlations and functions that are already known 

between the variables. The error values that were found (0.01 magnitude) were 



therefore lower than in Experiment 6 (0.1 magnitude), where experimental values 

were used. The evolutionary algorithm used to generate the matrix was set to all 

of the default parameters with the number of mating events (mevs) set to 10M. 

From the TLI file, the errors tend to stop improving with 0.01 significance 

measure after about 5M mevs.  

The OC does a good job in predicting an asymmetrical relationship between Zc 

and (Pc, Vmc), where the critical pressure and critical molar volume can be used 

to predict the critical compression factor, but not the other way around. This 

correlation makes a lot of sense based on the equation shown in the correlation 

matrix for Zc. Tc was not as useful in predicting Zc compared to Pc and Vmc, 

probably because it is redundant to have all three critical constants to predict 

Zc. The OC also shows that there are fairly good symmetric correlations between 

the PVT critical constants, which would probably be the first area to explore 

with making an actual model from the matrix.  

 

Experiment 6 

The dataset from Experiment 4 was used for this OC experiment. The TLI data file 

suggested that no more significant improvements (measure 0.01) could be made by 

increasing the mevs beyond 100,000 for at least two features (4,11). Increasing 



the mevs to 5M and looking at the TLI file indicates that most significant 

decreases in error happen at or before 500,000 mevs. However, the matrices 

generated from the 10M and 100,000 mevs retain a lot of similar zeros and so the 

matrix from 100,000 mevs is shown below. 

 

The OC matrix above indicates an asymmetric relationship between 5 and (2,3,4), 

where the flash point can be predicted with high correlation using the heat of 

combustion, specific gravity, and auto-ignition temperature. Investigation of 

this relationship for modelling data would also be of interest. This matrix also 

predicts a symmetrical relationship between the critical temperature and the 

boiling point, which is a sensible correlation.  

Conclusions and Next Steps 

This paper has compared two different hierarchical clustering algorithms, 

the Bubble Clustering Algorithm (BCA) and the Join-The-Dots (JTD) Algorithm, on 

various chemical data sets of varying sizes and features. The BCA is an 

improvement from the JTD method because it has higher stability when chemical 

data is added or removed. The datasets used to generate the trees can be tailored 



by giving one or two values an obvious space for clustering, and the example 

given was with flammable vs non-flammable materials. Improvements to be made for 

the BCA include generation of a horizontal distance measure, similar to the JTD 

trees, that shows how close or far apart in value the data is from the associator 

matrix for neighbouring branches.  

This paper has also explained how to use the Omni-correlator code to 

generate correlation matrices of significant importance and it has been used to 

satisfactorily show relationships within trivial and non-trivial (experimental) 

data sets for chemical compounds. The next steps would be to take these 

significant relationships and to try and build a model with the dataset. 

Improvements for the OC would be to make the program more user friendly by 

allowing the code to accept different formats of input file. Also, it may be 

helpful to generate multiple TLI files for one run of the OC. 
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